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ABSTRACT
In this paper, we introduce a new four-parameter distribution called the new gener-
alized Cauchy distribution (NGC). The structural properties of the new distribution
are discussed. Expressions for the quantiles, mode, mean deviation, and distribution
of order statistics are derived. It is shown that the distribution belongs to the class
of subexponential distributions. NGC has regularly varying tails and is a member
of the class of heavy-tailed distributions. It is shown that the tail weight of NGC
is higher as compared to the Cauchy distribution. Parameters of NGC distribution
are estimated by the percentile method, method of quantile least square, Cramer-
Von Mises method, and method of maximum likelihood. Monte Carlo simulation is
performed in order to investigate the performance of quantile least square estimates,
Cramer-Von Mises estimates, and maximum likelihood estimates. The existence and
uniqueness of maximum likelihood estimates are proved. The application of two real
data sets shows the performance of the new model over other generalizations of
Cauchy distribution.

KEYWORDS
Cramer-Von Mises method; Heavy tailed; Maximum likelihood estimation; Method
of quantile least-square; Regular variation

1. Introduction

The first analysis of the properties of the Cauchy distribution was published by the
French mathematician Poisson in 1824. The Cauchy distribution had first appeared
in the works of Pierre de Fermat and was then studied by many researchers such
as Issac Newton, Gottfried Leibniz, and others. Based on [1], the Cauchy distribution
becomes associated with Cauchy when Cauchy responded to an article by [2] criticizing
a method of interpolation proposed by Cauchy. The Cauchy distribution named after
Augustin Cauchy; is a continuous probability distribution and is also known as the
Lorentz distribution or Breit-Wigner distribution. It is also the distribution of the
ratio of two independent normally distributed random variables with a mean zero.
The Cauchy distribution has no moments, and therefore the law of large numbers
does not apply, which motivates researchers to generalize the Cauchy distribution.
[3] proposed a generalization of the Cauchy distribution, [4] introduced the wrapped
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Cauchy distribution, skew Cauchy distribution was studied in [5], another class of
skew-Cauchy distribution was introduced by [6], [7] introduced a generalization of
the skew-Cauchy distribution and recently [8] used the beta family studied in [9] to
generate the so-called Beta Cauchy distribution.
The Cauchy distribution is used in statistics as the canonical example of pathological
distribution since both its expected value and variance are undefined. In mathematics,
it is closely related to the Poisson kernel, which is the fundamental solution for the
Laplace equation. It is one of the distributions that are stable.
The Cauchy distribution resembles the normal distribution family of curves, while
the resemblance is there it has a taller peak than normal. That means it is a heavy
tail probability distribution and unlike the normal distribution, its fat tails decay
much more slowly. This distribution is often used in Spectroscopy, hydrology, electric
permittivity, etc.
A random variable X is said to have Cauchy distribution with parameters µ and θ if
its pdf is given by

g(x) =
1

πθ

1

(1 + (x−µ
θ )2)

; −∞ ≤ x ≤ ∞,−∞ ≤ µ ≤ ∞, θ > 0 (1)

and the cdf of X is given by

G(x) =
1

π
arctan

(
x− µ

θ

)
+ 0.5. (2)

This article introduces a new four-parameter Cauchy distribution, called the New
generalized Cauchy (NGC) distribution. The NGC distribution has regularly vary-
ing tails, it belongs to the class of long-tailed distributions and is a member of the
dominated variation distribution. Hence it belongs to the class of subexponential dis-
tributions. Also, it can be seen that limx→∞ h(x) = 0, h(x) is the hazard rate of
NGC.
As a consequence of these, we have the following:
If X1, X2, ..., Xn are i.i.d random variables and if Sn = X1 +X2 + ...+Xn,
then

P (Sn > x) ∼ nP (Xi > x), as x → ∞.

That is, if

Vn = max
1≤i≤n

Xi,

then

P (Sn > x) ∼ nP (Xi > x) ∼ P (Vn > x).

Hence, for large x, the event Sn > x is due to the event Vn > x. That is, exceedances
of the high threshold by the sum are due to the exceedances of this threshold by the
largest value in the sample.
One of the classical fields of applications for subexponential distributions is insurance
mathematics. Such distributions are used as realistic models for describing the sizes
of real-life insurance claims which can have distributions with very heavy tails. This
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interpretation suggests one way of defining a heavy-tailed distribution: the tail of the
sum is essentially determined by the tail of the maximum. This intuitive approach
leads to the definition of a sufficiently large class of heavy-tailed distributions.
Two classes of heavy-tailed distribution have been most successful, the distributions
with regularly varying tails, and the subexponential distributions. In various fields of
applied mathematics, we observe power-law behavior. To describe the deviation from
pure power laws, the notion of regular variation was introduced. The regular variation
appears in various fields of applied probability, so as queuing theory, extreme value
theory, renewal theory, theory of summation of random variables, and point process
theory.

Quantile estimation methods can be used for estimating parameters of different
distributions, particularly in the case when we cannot use the method of moments,
for heavy-tailed distributions. We focus on the percentile method, the quantile least
squares method, and its modifications.
The paper is organized as follows. In Section 2, we introduce a new generalized Cauchy
distribution, discuss the shape of the density function and distribution function of the
model. We derive the quantiles, mode, and Mean deviation, Analytical shapes of the
reliability functions of the model under study, pdf of order statistics, and their moments
are derived in Section 3. In section 4, study the tail properties of distributions, and it
is shown that the distribution has a regularly varying tail, and belongs to the class of
subexponential distributions. In Section 5, quantile least square estimation methods,
Cramer-Von Mises estimation method, and method of maximum likelihood estimation
is explored, and we evaluate the performance of quantiles, Cramer-Von Mises, and
maximum likelihood estimates using Simulation. We analyze two real data sets to
illustrate the use of the proposed distribution in Section 6. In Section 7, concluding
remarks are presented.

2. New Generalized Cauchy Distribution

We introduce a new generalization of the Cauchy distribution as a competitor for sev-
eral generalizations of the Cauchy distribution.
[10] introduced a method of adding parameters to distribution and based on this
method, several extensions of existing distributions have appeared in the literature.
[11] generalized the Marshall-Olkin scheme and introduced a family of distributions
generated through truncated negative binomial. Note that, both the Marshall-Olkin
scheme and its generalization through truncated negative binomial arise as the dis-
tribution of random minimum or random maximum. For the applications of random
minimum or random maximum in various fields, see [10]. Recently, several gener-
alizations of Uniform distributions have appeared in the literature. [12] introduced
Marshall-Olkin extended Uniform distribution with pdf

g(y;α, β) =
αβ

(αβ + (1− α)y)2
; 0 ≤ y ≤ 1, α > 0, β > 0, (3)

and expressed it as a mixture distribution with exponential distribution as mixing
density. Using the approach of [11], [13]defined a generalized Uniform distribution
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with pdf

g(y;α, β) =
(1− α)βαβ

(1− αβ)(y(1− α) + α)β+1
; 0 ≤ y ≤ 1, α > 0, β > 0, (4)

and studied its properties.
Note that, a uniform random variable Y can be transformed to a Cauchy random
variable X through the transformation X = µ+ θ tan[(Y − 0.5)π].
When Y has the pdf (4), we obtain a new distribution which we call New Generalized
Cauchy (NGC) distribution with four parameters.
The pdf of NGC(α, β, µ, θ) distribution thus obtained is

f(x) =
βαβ(1− α)

π(1− αβ)

[(0.5 + 1
π arctan(x−µ

θ ))(1− α) + α]−(β+1)

(1 + (x−µ
θ )2)

, (5)

where ∞ ≤ x ≤ ∞,−∞ ≤ µ ≤ ∞, α, β, θ > 0,
and the cumulative distribution function(cdf) of X is given by

F (x) =
1− αβ[(0.5 + 1

π arctan(x−µ
θ ))(1− α) + α]−β

1− αβ
. (6)

For convenience, let θ = 1 and µ = 0.
Then

f(x) =
βαβ(1− α)

π(1− αβ)

[(0.5 + 1
π arctan(x))(1− α) + α]−(β+1)

(1 + x2)
, (7)

where −∞ ≤ x ≤ ∞, α > 0, β > 0.

Remark 1. When β = 1 and α → 1, NGC reduces to Cauchy distribution.

The pdf and cdf plots of NGC(α, β, µ, θ) for various values of the parameters are
presented in Figure 1.

−10 −5 0 5 10

0
.0

0
.1

0
.2

0
.3

0
.4

x

f(
x
)

α = 0.2 ,  β = 0.1

α = 0.4 ,  β = 0.1

α = 0.1 ,  β = 0.2

α = 0.1 ,  β = 0.3

α = 0.9 ,  β = 0.9

(a) Plots of the pdf of NGC(α, β, µ, θ) distri-

bution

−10 −5 0 5 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

F
(x

)

α = 0.2 ,  β = 0.1

α = 0.4 ,  β = 0.1

α = 0.1 ,  β = 0.2

α = 0.1 ,  β = 0.3

α = 0.9 ,  β = 0.9

(b) Plots of the cdf of NGC(α, β, µ, θ) distri-

bution

Figure 1. Pdf and cdf plot of NGC(α, β, µ, θ) distribution

3. Properties of the New Generalized Cauchy Distribution

Theorem 3.1. The limit of the NGC density function as x → ±∞ is zero.
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Proof. Trivial and hence omitted.

3.1. Quantile function

The qth quantile xq of the NGC random variable is given by

xq = µ+ θ tan

[
π

[
α

1− α
[(1− q(1− αβ))−

1

β − 1]− 0.5

]]
. (8)

In particular, Median is given by,

x0.5 = µ+ θ tan

[
π

[
α

1− α
[(1− 0.5(1− αβ))−

1

β − 1]− 0.5

]]
. (9)

Remark 2. The mode of the NGC(α, β) is the solution of the equation k(x) = 0,
where

k(x) = 2(µ− x)π

[(
0.5 +

1

π
arctan

(
x− µ

θ

)
(1− α)

)
+ α

]
− θ(1− α)(1 + β).

3.2. Mean Deviation

The mean deviation about the median, can be used as measure of the degree of scatter
in a population. Let M be the median of the NGC distribution given by (9).
The mean deviation about the median can be calculated as

δ(X) = E|X −M | =
∫ ∞

−∞
|x−M |f(x)dx,

Hence,we obtain the following equation δ = µ− 2J(M) where J(q) is

J(q) =
(1− α)βαβ

1− αβ

∫ q

−∞
x
[(0.5 + 1

π arctan(x−µ
θ ))(1− α) + α]−(β+1)

π(1 + (x−µ
θ )2)

dx. (10)

One can easily compute this integral numerically in software such as MATLAB, Math-
cad, R, and others and hence obtain the mean deviation about the median as desired.

3.3. Stochastic Ordering

Stochastic orders used in many areas of probability and statistics. Such areas include
reliability theory, survival analysis, queueing theory, biology, economics, insurance,
and actuarial science (see, [14]). Let X and Y be two random variables having cdf’s F
and G respectively, and denote by F̄ = 1−F and Ḡ = 1−G their respective survival
functions, with corresponding pdf’s f, g. The random variable X is said to be smaller
than Y in the:

(1) stochastic order (denoted as X ≤st Y ) if F̄ (x) ≤ Ḡ(x) for all x;

(2) likelihood ratio order (denoted as X ≤lr Y ) if f(x)
g(x) is decreasing in x ≥ 0;

(3) hazard rate order (denoted as X ≤hr Y ) if F̄ (x)
Ḡ(x)

is decreasing in x ≥ 0;
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(4) reversed hazard rate order (denoted as X ≤rhr Y ) if F (x)
G(x) is decreasing in x ≥ 0.

The four stochastic orders defined above are related to each other, have the following
implications (see,[14]):

X ≤rhr Y ⇐ X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y. (11)

The NGC is ordered with respect to the strongest “likelihood ratio” ordering as shown
in the following theorem. It shows the flexibility of the NGC distribution.

Theorem 3.2. Let X ∼ NGC(α1, β1) and Y ∼ NGC(α2, β2). If β1 = β2 = β and
α1 < α2; then X ≤lr Y hence X ≤rhr Y ,X ≤hr Y and X ≤st Y .

Proof. The likelihood ratio is

gX(y)

gY (y)
=

α1
β(1− α1)(1− αβ

2 )[(0.5 +
1
π arctan(x))(1− α1) + α1]

−(β+1)

α2
β(1− α2)(1− αβ

1 )[(0.5 +
1
π arctan(x))(1− α2) + α2]−(β+1)

Thus,

d log

dx

[
gX(y)

gY (y)

]

=
(1 + β)

π(1 + x2)

[
(1− α2)

[(0.5 + 1
π arctan(x))(1− α2) + α2]

− (1− α1)

[(0.5 + 1
π arctan(x))(1− α1) + α1]

]

< 0.

Now, if β1 = β2 = β and α1 < α2, then
d log
dx

[gX(y)
gY (y)

]
< 0, which implies that X ≤lr Y

hence X ≤rhr Y ,X ≤hr Y and X ≤st Y .

3.4. Reliability Analysis

The reliability function is the characterization of an explanatory that maps a
set of events, usually associated with the failure of some system onto time. It is the
probability that the system will survive beyond a specified time, is defined by R(t) =
1− F (t). The Reliability function of NGC(α, β, µ, θ) is given by,

R(t) = 1−

[
1− αβ

[
(0.5 + 1

π arctan( t−µ
θ ))(1− α) + α

]−β

1− αβ

]
. (12)

The other characteristic of interest of a random variable is the hazard rate function
defined by

h(t) =
f(t)

1− F (t)
,
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The hazard rate function of NGC(α, β, µ, θ) is given by,

h(t) =

βαβ(1−α)
π(1−αβ)

[(0.5+ 1

π
arctan( t−µ

θ
))(1−α)+α]−(β+1)

(1+( t−µ

θ
)2)

1−
[
1−αβ [(0.5+ 1

π
arctan( t−µ

θ
))(1−α)+α]−β

1−αβ

] . (13)

The behaviour of reliability and hazard rate function of NGC(α, β, µ, θ) for various
choices of the values of the parameters are presented in Figure 2. The cumulative
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Figure 2. Reliability and hazard rate plot of NGC(α, β, µ, θ) distribution

hazard rate function of NGC distribution H(t) is given by,

H(t) = − lnR(t)

= − ln

[
1−

[
1− αβ[(0.5 + 1

π arctan( t−µ
θ ))(1− α) + α]−β

1− αβ

]]
. (14)

It is important to know that the units for H(t) are the cumulative probability of failure
per unit of time, distance, or cycles.

Theorem 3.3. The limit of the hazard rate function of NGC distribution as t → ±∞
is zero.

Proof. Trivial and hence omitted.

3.5. Order Statistics

Let X1, X2, ..., Xn be a random sample from NGC(α, β, µ, θ) . Also, let
X(1), X(2), ..., X(n), denote the corresponding order statistics. Then the pdf and cdf

of kth order statistics, are given by

fX(x) =
n!

(k − 1)!(n− k)!
[F (x)]k−1 [1− F (x)]n−k f(x)

=
n!

(k − 1)!(n− k)!

1

1− αβ

βαβ[(0.5 + 1
π arctan( t−µ

θ ))(1− α) + α]−(β+1)(1− α)

π(1 + ( t−µ
θ )2)
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[
1− αβ[(0.5 + 1/π arctan(x))(1− α) + α]−β

1− αβ

]k−1

[
1−

1− αβ[(0.5 + 1/π arctan( t−µ
θ ))(1− α) + α]−β

1− αβ

]n−k

(15)

and

FX(x) =

n∑
j=k

(
n
j

)
[F (x)]j [1− F (x)]n−j

=

n∑
j=k

(
n
j

)[
1− αβ[(0.5 + 1

π arctan(x−µ
θ ))(1− α) + α]−β

1− αβ

]j

[
1−

1− αβ[(0.5 + 1
π arctan(x−µ

θ ))(1− α) + α]−β

1− αβ

]n−j

(16)

respectively.
The pdf of the minimum is,

fX(1)
(x) =

nβαβ[(0.5 + 1
π arctan(x−µ

θ ))(1− α) + α]−(β+1)(1− α)

π(1− αβ)(1 + (x−µ
θ )2)

[
1−

1− αβ[(0.5 + 1
π arctan(x−µ

θ ))(1− α) + α]−β

1− αβ

]n−1

(17)

and the pdf of the maximum is,

fX(n)
(x) =

nβαβ[(0.5 + 1
π arctan(x−µ

θ ))(1− α) + α]−(β+1)(1− α)

π(1− αβ)(1 + (x−µ
θ )2)

[
1− αβ[(0.5 + 1

π arctan(x−µ
θ ))(1− α) + α]−β

1− αβ

]n−1

. (18)

4. Tail Behaviour

Here we study the tail behaviour of NGC distribution.
The NGC has a heavy tail, that is it takes extreme value with high probability. This
feature empirically distinguishes NGC from the normal and many other distributions.
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Figure 3. Comparison of tails of Cauchy, normal and NGC densities.

Figure 3 plots the tails of the density of NGC and compare them with Cauchy and
normal densities.
Here we plot the tail density of NGC by using parameter values µ = 0, θ = 1 and
α > 1, β ≥ 1 and compare with standard Cauchy and standard normal densities. The
NGC distribution has tails thicker than Cauchy and normal.

We can easily show that lim supx→∞ f(x)eλx = ∞ for any λ > 0, and hence the
density f is heavy tailed.
Definition: An ultimately positive function f is called regularly varying at infinity
with index γϵR if for any fixed c > 0,

lim
x→∞

f(cx)

f(x)
= cγ .

The following theorem establishes that the NGC density function given in (7) is a
function with regularly varying tails.

Theorem 4.1. The density function of NGC distribution is a function with regularly
varying tails.

Proof. Using the density function (7), we have

lim
x→∞

f(cx)

f(x)
= lim

x→∞

[(0.5 + 1
π arctan(cx))(1− α) + α]−(β+1)(1 + x2)

[(0.5 + 1
π arctan(x))(1− α) + α]−(β+1)(1 + (cx)2)

.

Applying limits, the above simplifies to

lim
x→∞

f(cx)

f(x)
=

1

c2
,
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and hence we have the desired result.

Definition: An ultimately positive function f is long-tailed and is said to belong to
class L if and only if

lim
x→∞

f(x+ y)

f(x)
= 1, for all y > 0.

Theorem 4.2. The NGC distribution belongs to the class L.

Proof.

lim
x→∞

f(x+ y)

f(x)
=

[(0.5 + 1
π arctan(x+ y))(1− α) + α]−(β+1)(1 + x2)

[(0.5 + 1
π arctan(x))(1− α) + α]−(β+1)(1 + (x+ y)2)

= 1,

and hence f belongs to the class L.

Definition: An ultimately positive function f belong to the class D of dominated
variation distributions if there exists c > 0

lim
x→∞

f(x)

f(2x)
= c, for all x > 0.

Theorem 4.3. The NGC distribution belongs to the class D dominated variation
distributions .

Proof.

lim
x→∞

f(x)

f(2x)
= lim

x→∞

[(0.5 + 1
π arctan(x+ y))(1− α) + α]−(β+1)(1 + (2x)2)

[(0.5 + 1
π arctan(2x))(1− α) + α]−(β+1)(1 + x2)

.

Applying limits, the above simplifies to

lim
x→∞

f(x)

f(2x)
= 4,

and hence f belongs to the class of dominated variation distributions.

5. Parameter Estimation

In this section, we use the percentile method, the quantile least squares method and
its modification, the method of Cramer-von-Mises, and the method of maximum like-
lihood for estimation of parameters of NGC distributions.

5.1. The percentile method

In the percentile method, distribution quantiles are compared with sample quantiles.
The number of required quantiles depends on the number of distribution parame-
ters. The percentile method (PM) allows for the estimation of unknown parameters
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θ1, θ2, ..., θs of the continuous random variable X distribution with cumulative dis-
tribution function F (., θ1, θ2, ..., θs) by comparing theoretical quantiles and empirical
quantiles ([15], [16]). Then, the function for which we calculate the global minimum
has the following form:

G(θ1, θ2, ..., θs) =

n∑
i=1

(Xi/n:n −Qi/n)
2 (19)

whereXi/n:n is the sample quantile of order pi =
i
n from the i.i.d. sampleX1, X2, ..., Xn

and Qi/n = F−1( i
n , θ1, θ2, ..., θn).

Let X1, X2, ..., Xn be an i.i.d. sample with cdf F. Let us denote by Xpi:n the sample
quantile of order pi, i = 1, ..., s. Estimators of the parameters θ1, θ2, θ3..., θs are the
statistics θ̂1

pm
, θ̂2

pm
, ..., θ̂s

pm
that are solutions of the equations:

Xp1:n = F−1(p1, θ1, θ2, ..., θs),

Xp2:n = F−1(p2, θ1, θ2, ..., θs), (20)

.....

Xps:n = F−1(ps, θ1, θ2, ..., θs).

where F−1 is the inverse of F.
When estimating parameters θ1, θ2, θ3, θ4 for the random variable X with cdf
F (., θ1, θ2, θ3, θ4), frequently the quantiles of orders p1, p2, p3, andp4 are chosen, such
that p1 + p2 + p3 + p4 = 1.

For the NGC distribution, the cdf is F (x) =
1−αβ [(0.5+ 1

π
arctan( x−µ

θ
))(1−α)+α]−β

1−αβ and we
consider the quantiles p1, p2, p3 and p4.
The estimators of µ, θ, α and β are the simultaneous solutions of the equations

Xp1:n = µ+ θ tan

[
π

[
α

1− α
[(1− p1(1− αβ))−

1

β − 1]− 0.5

]]
,

Xp2:n = µ+ θ tan

[
π

[
α

1− α
[(1− p2(1− αβ))−

1

β − 1]− 0.5

]]
,

Xp3:n = µ+ θ tan

[
π

[
α

1− α
[(1− p3(1− αβ))−

1

β − 1]− 0.5

]]
(21)

and
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Xp4:n = µ+ θ tan

[
π

[
α

1− α
[(1− p4(1− αβ))−

1

β − 1]− 0.5

]]
.

5.2. Quantile least squares method and its modification

The quantile least squares method (QLSM) estimates the unknown parameters
θ1, θ2, ..., θs of random variable X with cdf F by minimizing the sum of squares of
the differences between theoretical and empirical quantiles ([17]; [16]). Then, the func-
tion for which we calculate the global minimum has the following form:

G(θ1, θ2, ..., θs) =

n∑
i=1

(Xi/n:n −Qi/n)
2 (22)

where Xi/n : n is the sample quantile of order pi = i
n from the i.i.d. sample

X1, X2, ..., Xn and Qi/n = F−1( i
n , θ1, θ2, ..., θn).

The estimators of parameters θ1, θ2, ..., θs obtained by QLSM are denoted by

θ̂1
qls

, θ̂2
qls

, ..., θ̂s
qls

.
Estimation using all available quantile orders can, however, in some cases cannot be
feasible. For the NGC distribution extreme statistics have infinite variance, which
means that the mean squared errors of estimators based on them are very large.
Therefore, the smallest and largest order statistics must be rejected for the estima-
tion of the NGC distribution parameters. The modification of the QLSM is rejecting
a fixed number of quantiles, which is known as the truncated quantile least squares
method (TQLSM). In this case, the estimators of distribution parameters θ1, θ2, ..., θs
of the random variable X with distribution function F (., θ1, θ2, ..., θs) are statistics

θ̂1
tqls

, θ̂2
tqls

, ..., θ̂s
tqls

, for which the following expression reaches a global minimum:

G(θ1, θ2, ..., θs) =
∑
iϵIn

(Xpi:n −Qpi
)2 (23)

where pi =
i
n and In is the subset of 1, 2, ..., n. For symmetric or close to symmetric

distributions, it is recommended to skip k quantiles, where k is an even number, that
is k

2 the smallest and k
2 the largest quantiles. Then, the function (23) takes the form:

G(θ1, θ2, ..., θs) =

n−k/2∑
i=1+k/2

(Xpi:n −Qpi
)2 (24)

which is to be minimized.
The application of the TQLSM for theNGC distribution is related to the minimization
of the function:

G(α, β, µ, θ) =

n−k/2∑
i=1+k/2

[
Xpi:n −

[
µ+ θ tan

[
π

[
α

1− α
[(1− pi(1− αβ))−

1

β − 1]− 0.5

]]]]2
.

(25)
Therefore the estimators of µ, θ, α and β are the simultaneous solutions of the equations
∂G
∂µ = 0, ∂G∂θ = 0, ∂G∂α = 0 and ∂G

∂β = 0, where k is a fixed even number, Xpi:n is the
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quantile from the i.i.d. sample X1, X2, ..., Xn and pi =
i
n for i = 1 + k

2 , ..., , n− k
2 .

5.3. Method of Cramer-von Mises

Cramer-von-Mises type minimum distance estimators are based on minimizing
the distance between the theoretical and empirical cumulative distribution functions.
[18] provided empirical evidence that the bias of these estimators is smaller than
the bias of other minimum distance estimators. The Cramer-von-Mises estimators
α̂CME ,β̂CME ,µ̂CME , and θ̂CME , are the values of α,β,µ, and θ, minimizing

C(α, β, µ, θ) =
1

12n
+

n∑
i=1

[
F (ti | α, β, µ, θ, )−

2i− 1

2n

]2
.

Differentiating the above equation partially, with respect to the parameters α, β ,µ
and θ respectively and equating them to zero, we get the normal equations. Since the
normal equations are non-linear, we can use iterative method to obtain the solution.

5.4. Maximum Likelihood Estimation(MLE)

If the parameters of the NGC distribution are not known, then the maximum likeli-
hood estimates of the parameters can be obtained as follows: For analytical simplicity,
let assume that µ = 0 and θ = 1.
Consider a random sample (x1, x2, ..., xn) of size n, from the NGC(α, β, µ, θ) distri-
bution where µ = 0 and θ = 1. Then, the log likelihood function is given by,

logL = n log β − n log(1− αβ) + nβ logα+ n log(1− α)− n log π

− (β+1)

n∑
i=1

log[(0.5+
1

π
arctan(xi))(1−α)+α]+

n∑
i=1

log(1+xi
2). (26)

The likelihood equations are,

∂ logL

∂α
=

nβαβ−1

1− αβ
+

nβ

α
− n

1− α
− (β + 1)

n∑
i=1

(0.5− 1
π arctan(xi))

[(0.5 + 1
π arctan(xi))(1− α) + α]

= 0, (27)

and

∂ logL

∂β
=

nαβ logα

1− αβ
+

n

β
+ n logα−

n∑
i=1

log[(0.5 +
1

π
arctan(xi))(1− α) + α]

= 0. (28)
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These equations do not have explicit solutions and they have to be obtained numer-
ically using statistical software like nlm package in R.

Theorem 5.1. Let g1(α;β, x) denote the function on the right-hand side (RHS) of Eq.
(27), where β is the true value of the parameter. Then there exists a unique solution
for g1(α;β, x) = 0, for α̂ϵ(0,∞).

Proof. We have

g1(α;β, x) =
nβαβ−1

1− αβ
+

nβ

α
− n

1− α
− (β + 1)

n∑
i=1

(0.5− 1
π arctan(xi))

[(0.5 + 1
π arctan(xi))(1− α) + α]

.

Now

lim
α→0

g1(α;β, x) = 0 +∞− n− (β + 1)

n∑
i=1

(0.5− 1
π arctan(xi))

(0.5 + 1
π arctan(xi))

= ∞,

On the other hand

lim
α→∞

g1(α;β, x) = −∞.

Therefore there exists at least one root, say α̂ϵ(0,∞) such that g1(α;β, x) = 0
To show uniqueness, the first derivative of g1(α;β, x) = 0 is

∂g1(α;β, x)

∂α
< 0,

Hence there exist a solution for g1(α;β, x) = 0, and root, α̂ is unique.

Theorem 5.2. Let g2(β;α, x) = 0 denote the function on the right-hand side (RHS)
of Eq. (28), where α is the true value of the parameter. Then there exists a unique

solution for g2(β;α, x) = 0, for β̂ϵ(0,∞).

Proof. We have

g2(β;α, x) =
nαβ logα

1− αβ
+

n

β
+ n logα−

n∑
i=1

log[(0.5 +
1

π
arctan(xi))(1− α) + α].

Now

lim
β→0

g2(β;α, x) = ∞+ n log(α)−
n∑

i=1

log[(0.5 +
1

π
arctan(xi))(1− α) + α] + 0 = ∞,

On the other hand

lim
β→∞

g2(β;α, x) = 0 + n log(α)−
n∑

i=1

log[(0.5 +
1

π
arctan(xi))(1− α) + α] + 0 < 0.
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Therefore there exists at least one root, say β̂ϵ(0,∞) such that g2(β;α, x) = 0
To show uniqueness, the first derivative of g2(β;α, x) = 0 is

∂g2(β;α, x)

∂β
< 0,

Hence there exists a solution for g2(β;α, x) = 0, and root, β̂ is unique.

5.5. Simulation study

We conduct Monte Carlo simulation studies to compare the performance of the
estimators discussed in the previous sections and the process is repeated 10000 times.
We evaluate the performance of the estimators based on bias and mean squared error.
Methods are compared for sample sizes n = 100 and 500.
For each estimate we calculate the bias, mean-squared error. The statistics are
obtained using the following formulae.
Bias(α̂) = 1

n

∑n
i=1(α̂− α) Bias(β̂) = 1

n

∑n
i=1(β̂ − β)

Bias(µ̂) = 1
n

∑n
i=1(µ̂− µ) Bias(θ̂) = 1

n

∑n
i=1(θ̂ − θ)

MSE(α̂) = 1
n

∑n
i=1(α̂− α)2 MSE(β̂) = 1

n

∑n
i=1(β̂ − β)2

MSE(µ̂) = 1
n

∑n
i=1(µ̂− µ)2 MSE(θ̂) = 1

n

∑n
i=1(θ̂ − θ)2

The bias (estimate-actual), and the mean square errors (MSE) of the parameter
estimates for the percentile method, the truncated quantile least squares method,
method of Cramer-von-Mises, and Maximum likelihood estimation are presented in
Table 1 and 2.
From Tables 1 and 2, we note that the TQLM performs well for estimating the model
parameters. Also, as the sample size increases, the biases (estimate minus actual)
and the MSEs of the average estimates of truncated quantile least square estimates
decrease as expected.
The following observations can be drawn from Tables 1 and 2.
1. All the estimators show the property of consistency, i.e., the MSE decreases as the
sample size increases.
2. The bias of all parameters decreases with an increasing n for all the methods of
estimations.
3. The bias of µ̂,θ̂, generally increases with an increasing mu, theta for any given
mu,theta and n and for all methods of estimation.
4. In terms of MSE, all the methods of estimation produce smaller MSE for α̂ compared
to that of other parameters.

The results of the analysis indicate that rejecting a number of the smallest and
the largest quantiles significantly improved the estimators as compared to the QLSM
which rejects only extreme statistics. The quantile least squares method has an ad-
vantage over the percentile method in that there is no need to determine the ranks
of used order statistics. In the case of the NGC distribution, the application of mini-
mum or maximum statistics leads to very large mean squared errors of the parameter
estimators because extreme statistics have infinite variances. Rejecting extreme order
statistics significantly improves the properties of the estimators. Hence, we suggest the
truncated quantile least squares method.
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Table 1. Simulation result for α = 0.5,β = 0.1,µ = 1 and θ = 2.

n Est. PM TQLM TQLM CVM MLE
(k = 40) (k = 60)

100

Bias(α̂)
MSE(α̂)

Bias(β̂)

MSE(β̂)
Bias(µ̂)
MSE(µ̂)

Bias(θ̂)

MSE(θ̂)

0.0003
0.0001
0.0003
0.0001

9.140×10−5

8.355×10−6

-0.0001
2.392×10−5

-0.0001
1.797×10−5

0.002
0.0043
-0.0001

2.142×10−5

-0.0007
0.0006

-0.0004
0.0011
0.0003
0.0001
-0.0001

2.978×10−5

-0.001
0.001

-0.0004
0.0002

6.180×10−5

3.819×10−6

-0.0003
0.0001
-0.0013
0.001

0.0004
0.0002
0.0013
0.0026
-0.0005
0.0002
-0.0018
0.0019

500

Bias(α̂)
MSE(α̂)

Bias(β̂)

MSE(β̂)
Bias(µ̂)
MSE(µ̂)

Bias(θ̂)

MSE(θ̂)

0.0004
0.0002
0.0002

7.380×10−5

-0.001
0.001
-0.001
0.003

-1.626×10−5

2.645×10−7

0.005
0.0259

-5.435×10−5

2.954×10−6

-0.001
0.001

1.724×10−6

2.975×10−9

0.0036
0.0129
-0.0004
0.0002
-0.0007
0.0005

-0.0004
0.0001
0.0002

4.504×10−5

-0.0003
0.0001
-0.001
0.0011

0.0004
0.0002
0.0017
0.003
-0.0006
0.0003
-0.0015
0.0024

Table 2. Simulation result for α = 0.9,β = 0.5,µ = 2 and θ = 1.

n Est. PM TQLM TQLM CVM MLE
(k = 40) (k = 60)

100

Bias(α̂)
MSE(α̂)

Bias(β̂)

MSE(β̂)
Bias(µ̂)
MSE(µ̂)

Bias(θ̂)

MSE(θ̂)

-6.796×10−5

4.619×10−6

-4.296×10−5

1.846×10−5

-0.0009
0.0008
0.0008
0.0007

-0.0008
0.0007
0.0012
0.0015
-0.0011
0.0012
-0.0009
0.0008

-0.0008
0.0007

3.083×10−5

9.505×10−7

-0.0014
0.0021
-0.0008
0.0007

-0.0008
0.0007
0.0002

4.446×10−5

-0.0014
0.0019
-0.0009
0.0009

9.998×10−5

9.9975×10−6

-0.0003
9.355×10−5

-0.0003
9.856×10−5

-0.0006
0.0003

500

Bias(α̂)
MSE(α̂)

Bias(β̂)

MSE(β̂)
Bias(µ̂)
MSE(µ̂)

Bias(θ̂)

MSE(θ̂)

9.589×10−5

9.195×10−5

-0.0003
9.577×10−5

-0.0021
0.0048
-0.0007
0.0005

-0.0008
0.0007
0.0017
0.0032
-0.001
0.0011
-0.0009
0.0009

-0.0005
0.0002
0.0034
0.1178
-0.0012
0.0016
-0.0003

9.532×10−6

-0.0008
0.0008
0.0007
0.0005
-0.0013
0.0017
-0.0009
0.0009

-0.0007
0.0005
-0.0004
0.0002
-0.0014
0.0019
-0.0006
0.0003

6. Applications

In this section we consider two real-life data sets and compare the fit of the NGC
distribution with the following distributions:
(a) Two parameter Cauchy distribution having pdf

f(x;µ, θ) =
1

πθ

1

(1 + (x−µ
θ )2)

,

where −∞ < x < ∞,−∞ < µ < ∞, θ > 0.
(b)Three parameter Skew Cauchy (SC)distribution introduced by [6] with pdf

f(x;µ, θ, λ) =
1

πθ

1

(1 + (x−µ
θ )2)

[
1 +

λ(x− µ)√
θ2 + (1 + λ2)(x− µ)2

]
,
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where −∞ < x < ∞,−∞ < µ, λ < ∞, θ > 0.
(c)Transmuted Cauchy (TC)distribution introduced by [19] with pdf

f(x; (λ, µ, θ)) =
1

πθ

1

(1 + (x−µ
θ )2)

[
(1 + λ)− 2λ

(
1

π
arctan

(
x− µ

θ

)
+ 0.5

)]
,

where −∞ < x < ∞,−1 ≤ λ ≤ 1,−∞ < µ < ∞, θ > 0.
(d)New generalized Pareto (NGP)distribution introduced by [20] with pdf

f(x; (α, β, γ, θ)) =
αβαθ(1− γ)γθ

1− γθ
xαθ−1

(γxα + (1− γ)βα)θ+1
,

where x > β, α, β, γ, θ > 0
The values of the log-likelihood functions(− ln(L)), AIC(Akaike Information Cri-
terion), AICC(Akaike Information Criterion with correction), and BIC(Bayesian
Information Criterion) are calculated for the five distributions in order to verify which
distribution fits better to data. The better distribution corresponds to smaller − ln(L),
AIC, AICC and BIC values. Here, AIC = −2 ln(L)+2k, AICC = −2 ln(L)+( 2kn

n−k−1)
and BIC = −2 ln(L) + k ln(n), where L is the likelihood function evaluated at the
maximum likelihood estimates, k is the number of parameters, and n is the sample size.

6.1. First data set

The real data set corresponds to the data set from [21] on breaking stress of carbon
fibers (in Gba): The data set is
3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 3.22, 1.69, 3.28, 3.09, 1.87,
3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31,
3.31, 2.85, 2.56, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 2.76,
4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.71, 2.17, 1.17, 5.08, 2.48,
1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 2.48,0.85, 1.61,2.79,4.70, 2.03, 1.80, 1.57, 1.08,
2.03, 1.61,2.12, 1.89, 2.05, 3.65.
The data is approximately symmetric with skewness = 0.541 and kurtosis = 0.141
The descriptive statistics of the above data set are given in Table 3. The values in
Table 4 show that the NGC distribution leads to a better fit to the other four models.

Table 3. The descriptive statistics of first data set.

Min 1st Q Median Mean 3rd Q Max
0.810 1.875 2.700 2.673 3.257 5.560

Figure 4, shows the fitted density curves for the first data set.

6.2. Second data set

The second data set (http://www.ibge.gov.br/seriesestatisticas/exibedados.php?idnivel=-
BR& idserie=PRECO101), is the INPC data which represents the national index of
consumer prices in Brazil since 1979. The INPC index measures the cost of living of
households with head employees. The data set is given below.
The data is skewed-to-the right with skewness = 1.800 and kurtosis = 4.183.
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Table 4. Parameter estimates and goodness of fit for various models fitted for the first data set.

Model parameter estimates log L AIC AICC BIC K-S p-value

Cauchy
µ̂ = 2.3966

θ̂ = 0.1000
-239.3104 484.6208 484.9134 491.9838 0.5806 0.002

SC

µ̂ = 2.5586

θ̂ = 0.1100

λ̂ = 0.6136

-136.5362 279.0724 279.365 286.4354 0.2203 0.004

TC
λ̂ = 0.6023
µ̂ = 2.6911

θ̂ = 0.1100

-136.478 278.956 279.2486 286.319 0.3177 0.005

NGP

α̂ = 0.7017

β̂ = 1.4363
γ̂ = 0.9996

θ̂ = 1.1291

-141.719 291.42 291.913 301.237 0.5060 0.002

NGC

µ̂ = 2.6474

θ̂ = 0.6047
α̂ = 0.9954

β̂ = 10.2729

-134.1803 276.3606 276.8544 286.1776 0.1035 0.3147

0.69 0.44 0.13 0.03 0.17 0.37 2.47 0.62 0.57 1.39 0.39
0.97 0.42 0.12 -0.11 0.50 0.39 2.70 0.31 0.84 0.30 0.55
0.43 0.49 0.27 0.70 0.73 0.82 3.39 1.07 0.48 -0.05 0.74
0.30 0.62 0.23 0.91 0.50 0.18 1.57 0.74 0.49 0.09 0.07
0.25 0.42 0.38 0.73 0.40 0.04 0.83 1.29 0.77 0.13 0.05
0.59 0.43 0.40 0.44 0.41 -0.06 0.86 0.94 0.55 0.05 0.47
0.32 0.16 0.54 0.57 0.57 0.99 1.15 0.44 0.29 0.61 1.28
0.31 -0.02 0.58 0.86 0.39 1.38 0.61 0.79 0.16 0.74 1.29
0.26 0.11 0.15 0.44 0.83 1.37 0.09 1.11 0.43 0.94 0.65
0.26 -0.07 0.00 0.17 0.54 1.46 0.68 0.60 1.21 0.96 0.42
-0.18 -0.28 0.49 0.15 0.18 0.68 0.34 1.20 0.29 1.51 2.46
0.11 0.15 0.54 0.29 0.35 0.45 0.38 1.33 0.71 1.40 2.18
-0.31 0.72 0.85 0.10 0.11 0.81 0.02 1.28 1.46 1.17 2.10
-0.49 0.45 0.57 -0.03 0.60 0.33 0.50 0.93 1.65 1.02 2.49
1.62 1.01 1.44

The descriptive statistics of the above data set are given in Table 5. The values in
Table 6 shows that the NGC distribution leads to a better fit to the other four
models.

Table 5. The descriptive statistics of second data set.

Min 1st Q Median Mean 3rd Q Max
0.00000 0.290 0.500 0.6646 0.8600 3.3900

Figure 5, shows the fitted density curves for the second data set.

7. Concluding remarks

In this paper, we have introduced and studied a new family of distributions called the
New Generalized Cauchy (NGC) distribution which extends the Cauchy distribution.
We have studied various distributional characteristics of the model. The NGC distri-
bution is heavy-tailed and belongs to the class of subexponential distributions. It has
regularly varying tails and is a competitor of a number of existing generalizations of
Cauchy. We have considered estimation of parameters of NGC distribution using the
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Figure 4. Fitted pdf plots of first data set
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Figure 5. Fitted pdf plots of second data set.
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Table 6. Parameter estimates and goodness of fit for various models fitted for the second data set.

Model parameter estimates log L AIC AICC BIC K-S p-value

Cauchy
µ̂ = 0.4792

θ̂ = 0.2656
-139.3542 284.7083 284.8653 293.8771 0.5372 0.0303

SC
λ̂ = 1.1888
µ̂ = 0.2424

θ̂ = 0.3275

-132.7465 271.4929 271.6499 280.6617 0.4158 0.2013

TC
λ̂ = 0.2527
µ̂ = 0.4995

θ̂ = 0.1400

-132.0012 270.0025 270.1593 276.1711 0.2076 0.2628

NGP

α̂ = 0.0490

β̂ = 0.0020
γ̂ = 0.0867

θ̂ = 0.0001

-138.308 284.616 284.879 296.840 0.8579 0.3260

NGC

µ̂ = 0.4858

θ̂ = 0.2193
α̂ = 0.9993

β̂ = 3.7722

-125.3175 258.635 258.8982 270.86 0.1249 0.6541

method of quantile least square, Cramer-Von Mises method, and method of maximum
likelihood. In the case of NGC distribution, which is a heavy tailed distribution, re-
jecting a fixed number of the smallest and the largest quantiles significantly improves
the properties of the parameter estimators so that the TQLSM method performs well
for estimating the model parameters. The heavy-tailed properties of the model make
it appropriate for modeling a number of real-life situations. The applicability of the
model is demonstrated by using two real data sets. From Tables 4 and 6, we observe
a better performance of our scheme than the existing distributions.
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